RISEP PFAS Regulatory Update

Rhode Island Department of Environmental Management

Background Soil Study

- Why conduct a background study for PFAS?
 - Due to very low (ppt) standards for GA Groundwater, derived leachability criteria may be lower than anthropogenic ambient background.
 - Potential regional differences: Other New England States have documented aerial deposition from manufacturing facilities, such as Bennington, VT and Merrimack, NH.
- Definition of "Background" in the *Remediation Regulations* (250-RICR-140-30-1)
 - "Background" means the ambient concentrations of Hazardous Substances present in the environment that have not been influenced by human activities, <u>or</u> the ambient concentrations of Hazardous Substances consistently present in the environment in the vicinity of the Contaminated-Site which <u>are the result of human</u> <u>activities unrelated to Releases at the Contaminated-Site</u>.

Background Soil Study

- 50 samples locations selected on State-owned property throughout RI.
 - Targeted undisturbed areas based on historic aerial imagery.
 - Screened for known or potential PFAS sources:
 - Airports, fire stations, landfills, etc.
- Sample collection completed November December 2022 by Department personnel.
- Samples were analyzed for 24 individual PFAS by Alpha Analytical.

Sampling Methodology

(Left to right) Patty Burke and Michelle Furbeck log a soil sample collected at High Rocks Gorge in North Smithfield.

- Samples were collected using a hand auger to a depth of 2 feet below grade.
 - Minimum depth to which Direct Exposure Criteria are applied per the *Remediation Regulations*.
- 1 Duplicate per 20 samples (3 total for 50 samples)
- 1 Field blank for each sampling event
- 1 Equipment blank for each piece of equipment per 20 samples (3 blanks for each piece of equipment for 50 samples)
- Auger bucket, mixing bowl, and scoop (all stainless steel) were decontaminated after each sample with certified PFAS-free water and Alconox[®].

Overall Results

Compound	% Detection*	Mean (ng/kg)	Median (ng/kg)	Maximum (ng/kg)
PFHpA	92	113	105	312
PFOA	100	376	347	1,735
PFNA	52	127	121	209
PFDA	14	112	99	149
PFHxS	0	-	-	-
PFOS	100	406	354	899

*Detection above the Method Detection Limit (MDL)

PFBA, PFPeA, PFHxA, and PFUnA were detected in 100%, 88%, 78% and 18% of samples, respectively. No other individual PFAS were detected in more than one sample.

Background threshold values to be calculated using ProUCL Version 5.2 and associated Guidance

PFAS Results by County

County	Total # Samples	Mean PFOA (ng/kg)	Mean PFOS (ng/kg)
Bristol	2	532	726
Kent	6	344	319
Newport	5	283	421
Providence	19	416	416
Washington	18	360	385

Comparison with Other State Background Studies

State	% Detection	Max PFOA (µg/kg)	Mean PFOA (µg/kg)
Rhode Island	100	1.74	0.376
Maine	65	5.29	0.407
New Hampshire (0-6")	96	4.10	0.931
Vermont	91	4.90	0.500

State	% Detection	Max PFOS (µg/kg)	Mean PFOS (µg/kg)
Rhode Island	100	0.899	0.406
Maine	71	5.32	0.745
New Hampshire (0-6")	100	5.40	1.197
Vermont	100	4.40	0.970

Other State's results were calculated from publicly available background soil data and are shown for comparison purposes only

Comparison with Other State Background Studies

State	# Samples	Max PFOA (µg/kg)	Mean PFOA (µg/kg)
New Hampshire (0-6")	100	4.10	0.931
New Hampshire (6-12")	51	4.10	0.809
New Hampshire (12-18")	6	0.630	0.338
New Hampshire (18-24")	5	0.270	0.161
Average (0-24") assuming equal contribution			0.560
Rhode Island	50	1.74	0.376

Comparison with Other State Background Studies

State	# Samples	Max PFOS (µg/kg)	Mean PFOS (µg/kg)
New Hampshire (0-6")	100	5.40	1.20
New Hampshire (6-12")	51	3.90	0.634
New Hampshire (12-18")	6	0.410	0.229
New Hampshire (18-24")	5	0.160	0.103
Average (0-24") assuming equal contribution			0.541
Rhode Island	50	0.899	0.406

Leachability Criteria

- Method 1 Leachability Criteria were historically derived utilizing SESOIL and AT123D models.
- In 2020, the OLRSMM contracted GZA GeoEnvironmental, Inc. to assist with updating GB Groundwater Objectives and associated GB Leachability Criteria (using SEVIEW).
 - As part of this effort, leachability criteria were derived for PFAS being considered by RIDOH for a State MCL.
 - Leachability criteria were derived for PFAS6 based on an MCL of 10, 20, and 70 ng/L (ppt) using a range of published Koc values.
 - □ Leachability criteria for the PFAS6 range from 0.7 to ~ 3 (µg/kg) depending on Koc value.
- Final GA Leachability Criteria will "likely" be higher than 95% Upper Tolerance Limit (UTL) for individual PFAS based on background study.

Thank You! Any Questions?

Nicholas Noons, P.E. Office of Land Revitalization & Sustainable Materials Management nicholas.noons@dem.ri.gov (401) 222-2797 ext. 2777517